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Thus, we arrive at the ~~~~ern studied above, 

it is obvious that the procedure described can be applied also to the optimal control 

problems for the forced motions of elastic shells. 
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Shell theory equations are constructed by the method in [I] to the accuracy of 
quantities of the order of &, 2’rE, where k = 0 for 0 6 t < lfe and k I- 2-4 

for xjz < t < 1 (h, is the relative semithickness of the shell and t is the index 

of the state of stress variation). Without being within the framework of the Love- 

type theory, the equations obtained are compared with the Reissner-Naghdi equa- 
tion* [Z, 3f in which the transverse shear is taken into account, and it is shown 

that from the asymptotic viewpoint these latter are ~~~~s~sten~ It is also shown 
that if the shell resists shear weakly, then from the asymptotic viewpoint the 
Reissner-Naghdi theory is completely well founded. 

The three-dimensional equations of elasticity theory are reduced to two-dimen- 

sional equations in El] by using an ~~rnptot~~ method, i.e. all members of the 
same order relative to the small parameter A, are taken into account at each 

stage of the calcufaeions, It has been shown that without going outside the frame- 

work of the ordinary concepts of the Love-type theory of shells (in particular, 
without taking account of transverse shear), the shell theory equations can be 
constructed to the accuracy of quantities of the order of hFzt, but it is impos- 
sible to exceed this limit without a qualitative ~ornp~~~t~on in the theory, 

1 l To construct a shelf theory to the accuracy of qua~t~~~s of the order of hi+k 
(k = 0 for t < ‘/a and k = 2---4t for I/$ < t < 1) let us use the asymptotic re- 

presentation of the quantities in three-dimensional elasticity theory used in [I]. 
The terminology and notation used henceforth correspond to that used in [ 1, 43. 
Let ~7s take the equations of thee-dimensional elasticity theory referred to a tri-artho- 
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gonal coordinate system (a,, cxa, as) as initial equations. The curvilinear coordinates 

a, and a, coincide with the lines of curvature of the middle surface, while the lines cza 

are orthogonal thereto. 
bet us tranform the initial equations. We introduce the nonsymmetric stress tensor Tik 

related to the symmetric tensor oi k as follows : 

Ti =(I +?)3i7 Tij = (I +$)%i 

%3=(1 +j+6i3, T,= (l+$)jl++,, 

and also make the following change of variables: 

oi = RA-“kiy ~3 = Rh-‘c, h = RA-‘7 PI1 = t (1.2) 

This is customary for the asymptotic method of stretching the scale along the coordinate 

lines. The coordinates E and 5 are chosen in such a way that differentiation with res- 

pect to them do not result in any substantial magnification of the desired functions. We 

take the following asymptotic representation for the stresses and displacements 

ri = h’r.” 1 7 Zij = h’Zij*, Zi3 = hP.ti3* (1.3) 

‘63 = hCT3* lli = hl-?yi*, Us = hl-cu3* 

I 

0, l>,2P 
C= 

- 
1 -I- 2P, l<2P 

where all the quantities with the asterisk are of the same order. We write the three- 

dimensional elasticity theory equations with (l.l)-(1.3) taken into account. 
The equilibrium equations are 

Li* + s $- (ui2ri3*) + k_pRaiajqi = 0 (1.4) 
2 

- ~-CL* + h-lfW-cF* + T + h-l-CRala2q3 = 0 

The stress-displacement formulas are 

L&ajei* = airi* - YajTj *_ vh-l+cT3* 
1 

-$- ala2 
&J3* 
a; = h-21t2Ly3* _ yh-l+c (al%* + %%*> 

-g( aimi* + ajmj*) = 2 (1 + Y) UjTij* 

+ Uiaj ( ~ + h-'t2~-cajg,*) = a(1 + v)h-21+2P7i3* 

The conditions on the face surfaces of the shell are 

‘is* -2 I -5 .+ 91 7 

z3* 
- ai c=+1 l aa r=+1 

= + vq,* 
-- 

(1.5) 

(1.6) 

The following notation is used : 
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(1.7) 

Here and henceforth, each equality containing the subscripts i and j should be considered 

as two : one equation is obtained for i = 1 (j = 2) , and another for i = 2 (j = 1) . 
Proceeding exactly as in [ 11, but retaining more terms, the following expansions of the 

desired quantities can be obtained in 5 from (1.4) - (1.6) 

vs* = p 3 + h-~+C&p + ~-2z+2PpU~) (1.9) 

‘i3* = @) + c$? f h-z+2p-c~2@ + ~-21+2pg3@ + h_3[+4p_c54T;;) 

r3+ = (0) 
7, + g$) + h-Z+2p-c52 (2) Z, + h-2~+4P-Zc~3+) + 

h-3z+4p-c54$) + a-4!+6p-2~<5~,r5) 

In these formulas us(“), c3(l), . . ., ~~(5) are quantities of the same order, for which 

the following equations hold : 

$G = 
* (1.10) 

? 

(n = 1,2, 3) 

m) Z’R @y-l) _t_ q-1) ) 03 ==-nE (,I = 1, 2) 

p = z R~~~\“)[ejn)+.,1”+~~1k_3d~2R(~-_)e(n-1)l f 

V r OS 1 _R @ 
l-v a’,1 

(n = 0, . , 3) 

T!ll.’ -1 E 
21 [ 

&“’ + mf”’ + 
2H(l+v), z s~kn3dn2R ($- - &)m!"-"1 

(72 =o, . ...3) 
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&o + p+2p-eZ;;) + h-3k4P-cZ!4) - h-P 
23-2x (1.11) 

[ 
qi+ - qi- + a-1 + (qi+ + qi-) 

3 I 
.#) + h-z1+2p#) -. h-P 
23 23 - -y 

[ 

qi+ + qi- + h-'+, 3 (qi+ - (I,-, 
_: 

[ 
q3+ -cK+wq+ +~)(sut+Y~-~] 

The following notation has been used here : 

k,” = 0, S," = h-$P+C, r,n = _ A-l+C , 6,” = 1, dnn = A-” 

km= m m n s, = rn =dnm-1, a,“=0 (n+m) 

The quantities with negative superscripts should be assumed zero. The notation eifo), 

ei@), g$O), rnak), Lick’, L(k) and F(“) (k = 0, . . ., 3; m = 0, . . ., 4) is obtained 
from (1.7) and (1.8) in which the asterisk must be replaced by the superscripts 0,2, k 

or m , respectively. The following formulas hold for the remaining quantities: 

The system (1. lo), (1.11) contains 43 unknowns and as many equations. This system 

can be transformed by quantities used in shell theory. As a result of manipulations, we 
obtain formulas analogous to those Naghdi proposed. 

The displacements of the middle surface, the stress resultants and moments are defined 
as follows by using (l.l), (1.3) (1.9): 

n, = h”P#’ 
11 v zz JJ-q&O), w = _ Al-c (0) 

*3 (1.12) 
h 

TiE ’ s rida, = 2hh’ 
-h 

$1 + T $’ 
> 

h 

Gi= ' 

s 
-h 

zia3da, = y hm-c (~11) + A-Z'+ZP $ $') 
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Transforming the system (1. lo), (1.11) in combination with (1,12), we obtain the equi- 
librium equations of shell theory which agree with the standard equations and refined 
elasticity relationships, For brevity, let us write them in tensor form 

Tik = BE~~a~~~~ + (1 + Y) D~i~a~~=~ + DPikpuy $- (1.13) 

D - GikaPvamW + *I Kikap v&d + qd + i& hai” (d -6) 

Here 

The physical components of the tensors Ti”, iWik, E+ pap are related to the Stress 
resultants, moments, and strain components as follows : 

fFii] = Ei, [Eij] = f W: [E”iil = xi, [ELiA = f - gj (1.16) 

l~iil = Ti, [Tij] = SSj, [JJii] z Gi, [@“I 5 ITi, 
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The remaining notation in (1.13) - fl. 15) are similar to those used in fl]. 

The theory constructed differs qualitatively from a Love-type theory. As in the Naghdi 
theory, an elasticity relationship for the transverse stress resultants appears therein. More- 
over, the shear yig characterizing the change in angle between the tangent to the a- 
line and the normal to the middle surface, is introduced by (1.14) where the following 

displacements 
Ua.,l z?z h%$‘, p (1) 

up,z=h 02 fl.17) 

should be introduced in addition to the displacements of the middle surface in order to 

define ‘j’as . 

Let us note that the shear ras is considered zero in Love-type theories. This is equi- 

valent to discarding zis* in the last formula in (1,5), which introduces an error of the 

order of !$a”. The order of the system of differential equations for the theory obtained 

is sixteen. 
Note , The elasticity relationships obtained can be used to refine the analysis of the 

simple edge effect, which is analyzed in [5]. 

2. Let us write the Naghdi elasticity relationships in the customary notation (we 
speak of the first variant of the elasticity relationships Naghdi proposed, in which the 

transverse shear is taken into account but the hy~thesis about conserving the normal 
element is assumed) 

Tik = BEika%ap + DHikaPM,p f DHikaPVp~a3 
Mik- = DGi’E”b pap + DHika”& + DGikapg,yp3 

(2.1) 

ivi 5Ehaia 

= -sFpTp 

where EikaP, HikaP, Gik@ are defined by (1.15). 

We compare (1.13) and (2.1). For example, let us compare the elasticity reIation- 

ships for the stress resultants T ik. Naghdi retains the terms DHik”‘$aa and discards 

terms of the same order : (1 -j- v) D FikaflpaB and D PikpvY (Hikab and Fik@ are 
d~tin~t)* Moreover, there are no terms taking account of the influence of the load in 

the Naghdi elasticity relationships. Neglecting them, results in an error 0 (h,) in the 

elasticity relationships for the normal stress resultants and an error 0 (h*2-2t) in the 
elasticity relationships for the bending moments. 

It is therefore impossible to recognize (2.1) as asymptotically consistent. Naghdi 
introduced terms with yas therein but left out not only terms of the same order of smail- 
ness but also even greater terms (terms with (q3* - q3-)). 

Let us examine an exampIe which shows to what this can result in numbers. We take 

a hinge-supported closed circular cylindrical shell of radius r, thickness 2h and length 
1 ; its face surfaces are loaded as follows: 

x3 jaazh = q sin kg, ~3l&__h = 0 12.2) 

k = m-/E, O<E,i4 (2.3) 

The coordinate E-line is directed along the generatrix. and the line as along the normal 
to the middle surface. We seek the solution of the axisymmetric problem posed as 

u = a cos kg, v = 0, w = c sin kg (2.4) 
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The boundary conditions are hence satisfied automatically. let us compare the normal 
displacement w obtained by means of the theories (1.13) and (2. l), representing it in 
the form 11 

w=w,+;W 

Here w. is the displacement determined by a love-type theory, and W is the correction 

to the love-type theory found by a refined theory. Omitting the simple calculations 
reducing to the solution of algebraic equations, we write down the final results. For 

k = 1 (the index of the state of stress variation equals zero) we obtain 

Wi = - (I- v) $$J siu c, ‘4 Wz==--sin% (2.5) 

Here and later WI denotes the correction W found by the theory (1.13) and IV2 is the 

Naghdi theory correction. In order TO avoid writing down tedious formulas in the remain- 
ing examples, the displacements are evaluated for Y = 0.3. For k = h$s we obtain 

“7 WI 7~ - 1.12 x sin h;‘!“i, 11’0 = - 1 .07 5 sin l~;'/~< (2.6) 1 

It is seen from (2.5) and (2.6) that the discrepancy between the theories under consider- 
ation is more substantial in the case k = I, Y = 0,3 with the load (2.2). 

Let us load the same shell with tangential forces as follows: 

t,:$ IX,S_rL = I’ C(IS Ii<. TTcc3 I%., -__I, em 0 (2.7) 

Formulas (2.3) and (2.4) are retained. 
A computation carried out shows that complete agreement between the displacements 

U) found by both theories is obtained for the load (2.7) with Ii = I . For k 7 hi’ * a sub- 

stantial discrepancy is obtained 

WI = - 2.02 
p?G 
2E p sin h;“‘E, IV2 = -- 0.191 <F 7 p sin h;““E (2.8) 

Note. Naghdi p] constructs a theory there in which he dispenses with the hypothesis 

of conservation of the length of a normal element. Without analyzing the appropriate 

relationships here, we just note that they are also inconsistent from the elucidated view- 
point, 

3. By an asymptotic method we obtain the elasticity relationships for shells slightly 
resistant to shear. 

Let us introduce a quantity characterizing the ratio between the shear moduli G and 

G’, where G is the shear modulus for surfaces parallel to the middle surface, and G’ is 
the shear modulus for planes perpendicular to the middle surface 

G / G’ zzz q = h,-” (3.1) 

We insert (3.1) into (1.5). This will result in a change in only the right side of the last 
formula in (1.5) where the additional factor aal will appear. 

In constructing a theory of shells slightly resistant to shear, we should limit ourselves 

to the following values of a: 
O<a<2-2t (3.2) 

since it can be shown, if n > 2--2t, that the construction of a two-dimensional theory 

becomes impossible. 
Omitting computations analogous to those made in Sect. 1, let us write the elasticity 
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relationships for shells slightly resistant to shear 

Tik = BEikLPF,p + r 3A Gikzpva (rla’ 4 qp-) + (3.3) 

r 2, haik (q3+ - q3-) 

Mi” = DGi’C”“p.,p -_+ -$ DGik”p~a~pl +- rDHik”Psay + rDRikE,y -+- 

2h3rl 
’ r 15 (1 - v) 

paova (@+ _+ qp-) + 3 ;;T ~‘) sip (q3+ -+ qs-) 

Ni = _ 

The notation (1.15) introduced in Sect. 1 remains valid for the formulas written down . 
Two versions of the elasticity relationships are combined in (3.3) ; by assuming 

r = 0, we obtain the first version of elasticity relationships to the accuracy of 

0 (h, + h4-4’-2a), 0 f t < l/a 
E= 

O(h;-2' ;h4-&2a 
. 11 vz<t<i 

(3.4) 

and for r = 1 the second version to the accuracy of 

8 = 0 @t-s + h~+aa), 0 < t < 1 (3.5) 

It should be noted that for r = i the theory (3.3) plays the same part for shells re- 

sistant to shear as the theory [l] relative to the remaining hove-type theories ; a more 
complex and higher order system of shell theory equations than Naghdi’s is obtained in 

attempting to go beyond the accuracy (3.5). 
Comparing the elasticity relationships (3.3) for r = 0 with the Naghdi elasticity 

relationships (2. l), let us note that they differ negligibly in some numerical coefficients 

in the second order terms ; thus the coefficient is 4/, for the term DGikafiVay~3 in(3.3) 

while it is unity for the same term in the Naghdi theory ; moreover, the coefficient is 

‘is in the first term on the right in (3.3) for the transverse stress resultants in the elasti- 

city relationships, while it is 5/s in the Naghdi relations. It hence follows that the Na- 

ghdi elasticity relationships assure an accuracy to quantities on the order of (3.4) in an 

analysis of shells weakly resistant to shear. 
let us present a table (Table 1) of errors of the different theories for shells weakly 

resistant to shear. We represent the errors as hea + h,P or hea, and we enter the va- 
lues of a and fi in the Table. The errors obtained in analyzing shells without edges and 
a zero index of variability of the state of stress are written in the first row. The errors 
obtained in an analysis by the method of separating the state of stress [5], are given in 

the second row, the errors obtained for the membrane state of stress (t = 0) are given 
in the upper line of the row, and the errors in analyzing simple edge effects (t = l/i) 
are presented in the lower line of the row. Errors for states of stress with high variability 
are written in the third row. 

Let us clarify the domain of applicability of the Naghdi theory as a function of the 

variability index of the state of stress and the number a which characterizes the shell 
shear stiffness. 

An analysis of the shells under consideration by a Love-type theory not subjected to 
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improvements yields an error 0 (h, + hi-z’-e), while by modified theory [l] the er- 
ror is 0 (hi-+9. I t is seen from these error estimates that Love-type theory assures 
an accuracy which agrees with the accuracy of the Naghdi theory in an alaysis of closed 
shells with zero index of variability for values of u < 1 , which is even exceeded in 

the second case. For u = 1 the errors of all these theories agree. The Naghdi theory 
yields a lesser error for 1 < a < 2 (see the first row in the Table). 

Table 1 

Theories 

(3.3). r = i 

I112111 2-2t-a - 
I I 

2-2t-a 2-2t 4-.-4t-22n 2-2t 4 --4t-.-2a 
I I I I 

If the state of stress admits of separation into membrane and simple edge effects, then 
by using an iteration method desribed in [5], we obtain that for n < i/2 an analysis 

of the membrane state of stress by Naghdi method has no advantages as compared with 
Love-type theory. But for simple edge effects and states of stress with high variability, 
the Naghdi theory assures higher accwacy than a Love-type theory (see the second and 

third rows in the Table). 
The author is grateful to A. L. Gol’denveizer for consultation and constant attention 

to the research. 
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